The ratio of the height to the base of a right triangle, and reducible set theoretical division by zero

In $x-y$ coordinates, let the point of intersection between an arbitrary point $\mathrm{P}(p, a)$ in the first quadrant and a perpendicular line drawn from point P to the x-axis be represented as $\mathrm{Q}(p, 0)$. A right triangle $\triangle \mathrm{OPQ}$ is formed with $\angle \mathrm{POQ}=\theta$ (refer to the following diagram).

Then, the ratio of the height to the base, $\tan \theta$, can be represented as

$$
\tan \theta=\frac{\text { height }}{\text { base }}=\frac{a}{p}
$$

Here, let point P be moved parallel to the x-axis (along the dotted red line in the diagram above), towards the y-axis. This implies $\mathrm{P}(p \rightarrow+0, a)$. Then, the ratio of the height to the base, $\tan \theta$, becomes

$$
\lim _{\theta \rightarrow \frac{\pi}{2}} \tan \theta=\lim _{p \rightarrow+0} \frac{a}{p}=+\infty
$$

Let point P be moved further parallel to the x-axis until it is over the y-axis. Then, this implies $\mathrm{P}(p=0, a)$. Then, according to reducible set theoretical division by zero, the ratio of the height to the base, $\tan \theta$, becomes

$$
\tan \frac{\pi}{2}=\frac{\text { height }}{\text { base }}=\frac{a}{p}=\frac{a}{0}=0 \ldots a
$$

This corresponds to the statement: "When the base is 0 , the ratio of the height to the base is equal to 0 , and the height a is left over as a remainder."

Of course, when $a=1$,

$$
\frac{\text { height }}{\text { base }}=\frac{a}{p}=\frac{1}{0}=0 \ldots 1
$$

