February 9, 2016
Hiroshi Michiwaki

Series expansion of elementary functions and division by zero

1. The sine function can be expressed as

$$
\begin{equation*}
\sin z=z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}-\cdots+(-1)^{n} \frac{z^{2 n+1}}{(2 n+1)!}+\cdots \tag{1}
\end{equation*}
$$

Here, if we let $z=1 / w$, then

$$
\begin{equation*}
\sin \frac{1}{w}=\frac{1}{w}-\frac{1}{3!w^{3}}+\frac{1}{5!w^{5}}-\cdots+(-1)^{n} \frac{1}{(2 n+1)!w^{2 n+1}}+\cdots \tag{2}
\end{equation*}
$$

Therefore, substituting $w=0$,

$$
\begin{align*}
\sin \frac{1}{0} & =\frac{1}{0}-\frac{1}{3!\cdot 0^{3}}+\frac{1}{5!\cdot 0^{5}}-\cdots+(-1)^{n} \frac{1}{(2 n+1)!\cdot 0^{2 n+1}}+\cdots \\
& =\frac{1}{0}-\frac{1}{0^{3}}+\frac{1}{0^{5}}-\cdots+(-1)^{n} \frac{1}{0^{2 n+1}}+\cdots \\
& =0-0+0-\cdots+(-1)^{n} 0+\cdots \\
& =0 \\
\therefore \sin \frac{1}{0} & =0 \tag{3}
\end{align*}
$$

In other words, we obtain

$$
\begin{equation*}
\sin \frac{1}{0}=\sin 0=0 \tag{4}
\end{equation*}
$$

2. Cosine function

$$
\begin{equation*}
\cos z=1-\frac{z^{2}}{2!}+\frac{z^{4}}{4!}-\cdots+(-1)^{n} \frac{z^{2 n}}{(2 n)!}+\cdots \tag{5}
\end{equation*}
$$

Here, if we let $z=1 / w$, then

$$
\begin{equation*}
\cos \frac{1}{w}=1-\frac{1}{2!w^{2}}+\frac{1}{4!w^{4}}-\cdots+(-1)^{n} \frac{1}{(2 n)!w^{2 n}}+\cdots \tag{6}
\end{equation*}
$$

Therefore, substituting $w=0$,

$$
\cos \frac{1}{0}=1-\frac{1}{2!\cdot 0^{2}}+\frac{1}{4!\cdot 0^{4}}-\cdots+(-1)^{2 n-1} \frac{1}{(2 n)!\cdot 0^{2 n}}+\cdots
$$

$$
\begin{align*}
& =1-\frac{1}{0^{2}}+\frac{1}{0^{4}}-\cdots+(-1)^{n} \frac{1}{0^{2 n}}+\cdots \\
& =1-0+0-\cdots+(-1)^{n} 0+\cdots \\
& =1 \\
\therefore \cos \frac{1}{0}= & 1 \tag{7}
\end{align*}
$$

In other words, we obtain

$$
\begin{equation*}
\cos \frac{1}{0}=\cos 0=1 \tag{8}
\end{equation*}
$$

3. Exponential function

$$
e^{z}=1+\frac{z}{1!}+\frac{z^{2}}{2!}+\frac{z^{3}}{3!}+\cdots+\frac{z^{n}}{n!}+\cdots \quad(-\infty<z<\infty)
$$

Here, if we let $z=1 / w$, then

$$
\begin{equation*}
e^{\frac{1}{w}}=1+\frac{1}{1!w}+\frac{1}{2!w^{2}}+\frac{1}{3!w^{3}}+\cdots+\frac{1}{n!w^{n}}+\cdots\left(-\infty<\frac{1}{w}<\infty\right) \tag{10}
\end{equation*}
$$

Therefore, substituting $w=0$,

$$
\begin{align*}
e^{\frac{1}{0}} & =1+\frac{1}{1!\cdot 0}+\frac{1}{2!\cdot 0^{2}}+\frac{1}{3!\cdot 0^{3}}+\cdots+\frac{1}{n!\cdot 0^{n}}+\cdots \\
& =1+\frac{1}{0}+\frac{1}{0^{2}}+\frac{1}{0^{3}}+\cdots+\frac{1}{0^{n}}+\cdots \\
& =1+0+0+0+\cdots \\
& =1 \\
\therefore e^{\frac{1}{0}} & =1 \tag{11}
\end{align*}
$$

In other words, we obtain

$$
\begin{equation*}
e^{\frac{1}{0}}=e^{0}=1 \tag{12}
\end{equation*}
$$

4. Logarithm function

$$
\begin{equation*}
\log _{e}(1+z)=z-\frac{z^{2}}{2}+\frac{z^{3}}{3}-\cdots+(-1)^{n-1} \frac{z^{n}}{n}+\cdots \quad(-1<z<1) \tag{13}
\end{equation*}
$$

Here, if we let $z=1 / w$, then

$$
\begin{equation*}
\log _{e}\left(1+\frac{1}{w}\right)=\frac{1}{w}-\frac{1}{2 w^{2}}+\frac{1}{3 w^{3}}-\cdots+(-1)^{n-1} \frac{1}{n w^{n}}+\cdots \quad\left(-1<\frac{1}{w}<1\right) \tag{14}
\end{equation*}
$$

Therefore, substituting $w=0$,

$$
\begin{align*}
\log _{e}\left(1+\frac{1}{0}\right) & =\frac{1}{0}-\frac{1}{2 \cdot 0^{2}}+\frac{1}{3 \cdot 0^{3}}-\cdots+(-1)^{n-1} \frac{1}{n \cdot 0^{n}}+\cdots \quad\left(-1<\frac{1}{w}<1\right) \\
& =\frac{1}{0}-\frac{1}{0^{2}}+\frac{1}{0^{3}}-\cdots+(-1)^{n-1} \frac{1}{0^{n}}+\cdots \\
& =0-0+0-\cdots+(-1)^{n-1} 0+\cdots \\
& =0 \\
\therefore \quad \log _{e}\left(1+\frac{1}{0}\right) & =0 \tag{15}
\end{align*}
$$

In other words, we obtain

$$
\begin{equation*}
\log _{e}\left(1+\frac{1}{0}\right)=\log _{e}(1+0)=\log _{e}(1)=0 \tag{16}
\end{equation*}
$$

5. A binary function

$$
\begin{equation*}
(1+z)^{m}=1+m z+\frac{m(m-1)}{2!} z^{2}+\cdots+\frac{m(m-1) \cdot \cdots \cdot(m-n+1)}{n!} z^{n}+\cdots \tag{17}
\end{equation*}
$$

Here, if we let $z=1 / w$, then

$$
\begin{equation*}
\left(1+\frac{1}{w}\right)^{m}=1+\frac{m}{w}+\frac{m(m-1)}{2!w^{2}}+\cdots+\frac{m(m-1) \cdots \cdots(m-n+1)}{n!w^{n}}+\cdots \tag{18}
\end{equation*}
$$

Therefore, substituting $w=0$,

$$
\begin{align*}
\left(1+\frac{1}{0}\right)^{m} & =1+\frac{m}{0}+\frac{m(m-1)}{2!\cdot 0^{2}}+\cdots+\frac{m(m-1) \cdot \cdots \cdot(m-n+1)}{n!\cdot 0^{n}}+\cdots \\
& =1+0+0+\cdots \\
& =1 \\
\therefore \quad\left(1+\frac{1}{0}\right)^{m} & =1 \tag{19}
\end{align*}
$$

In other words, we obtain

$$
\begin{equation*}
\left(1+\frac{1}{0}\right)^{m}=(1+0)^{m}=1^{m}=1 \tag{20}
\end{equation*}
$$

