The Pythagorean theorem on a circle and division by zero

Let θ refer to the included angle that is formed between the x-axis and the line segment OP that connects a point P on the unit circle and the origin O . Then, the coordinates of point P are $(\cos \theta, \sin \theta)$. Therefore, we obtain

$$
\begin{equation*}
\cos \theta=\frac{1-\sin ^{2} \theta}{\cos \theta} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sin \theta=\frac{1-\cos ^{2} \theta}{\sin \theta} \tag{2}
\end{equation*}
$$

Here, Equation (1) and Equation (2) apply to all values of θ.
For example, if we let $\theta=\pi / 2$ in Equation (1), then we obtain

$$
\begin{equation*}
\cos \frac{\pi}{2}=\frac{1-\sin ^{2} \frac{\pi}{2}}{\cos \frac{\pi}{2}}=\frac{1-1^{2}}{0}=\frac{0}{0}=0 \tag{3}
\end{equation*}
$$

Furthermore, if we let $\theta=0$ in Equation (2), then we obtain

$$
\begin{equation*}
\sin 0=\frac{1-\cos ^{2} 0}{\sin 0}=\frac{1-1^{2}}{0}=\frac{0}{0}=0 \tag{4}
\end{equation*}
$$

Equation (3) and Equation (4) follow from the fundamental theorem of division by zero.

When reducing two functions, it is necessary to use caution in cases in which the value of the function is 0 . Of course, considering a point P at a radius r, we obtain a similar result whether we consider

$$
\begin{equation*}
x=\frac{r^{2}-(r \sin \theta)^{2}}{r \cos \theta} \tag{5}
\end{equation*}
$$

or

$$
\begin{equation*}
y=\frac{r^{2}-(r \cos \theta)^{2}}{r \sin \theta} \tag{6}
\end{equation*}
$$

When the radius satisfies $r=0$, Equation (5) and Equation (6) become

$$
\begin{equation*}
x=\frac{r^{2}-(r \sin \theta)^{2}}{r \cos \theta}=\frac{0^{2}-(0 \cdot \sin \theta)^{2}}{0 \cdot \cos \theta}=\frac{0}{0}=0 \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
y=\frac{r^{2}-(r \cos \theta)^{2}}{r \sin \theta}=\frac{0^{2}-(0 \cdot \cos \theta)^{2}}{0 \cdot \sin \theta}=\frac{0}{0}=0 \tag{8}
\end{equation*}
$$

respectively. In this example, even if we reduce r beforehand, the result will have the same value as in Equation (7) and Equation (8). Furthermore, because

$$
\frac{x}{r}=\cos \theta, \frac{y}{r}=\sin \theta
$$

when $r=0$, it is necessary to be aware that $\cos \theta=0$ and $\sin \theta=0$. In other words, when this fact is considered, Equation (7) and Equation (8) become

$$
\begin{equation*}
x=\frac{r^{2}-(r \sin \theta)^{2}}{r \cos \theta}=\frac{0^{2}-(0 \cdot 0)^{2}}{0 \cdot 0}=\frac{0}{0}=0 \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
y=\frac{r^{2}-(r \cos \theta)^{2}}{r \sin \theta}=\frac{0^{2}-(0 \cdot 0)^{2}}{0 \cdot 0}=\frac{0}{0}=0 \tag{10}
\end{equation*}
$$

respectively. Even when the same symbol is reduced, for example when r is reduced to $r^{2} / r=r$ in this case, r still remains in the numerator. Even if we set $r=0$, the result will be the same both before and after reduction. However, because $0 / 0 \neq 1$ and $0 / 0=0$, it is necessary to use caution when performing the original reduction, which comprises $a / a=$ 1.

