Function remainder formula division by zero

Theorem: Let $\mathrm{P}(x)$ be the dividend function, $\mathrm{Q}(x)$ be the divisor function, $\mathrm{A}(x)$ be the quotient function, and $\mathrm{R}(x)$ be the remainder function. Then, if we let

$$
P(x)=Q(x) A(x)+R(x)
$$

in the equation

$$
\frac{P(x)}{Q(x)}=\frac{Q(x)}{Q(x)} A(x) \cdots R(x)
$$

for a value of a that satisfies $\mathrm{Q}(a)=0$, the following holds:

$$
\frac{R(a)}{0}=0 \cdots R(a)
$$

Proof: According to the assumptions, because $\mathrm{P}(x)$ is the dividend function, $\mathrm{Q}(x)$ is the divisor function, $\mathrm{A}(x)$ is the quotient function, and $\mathrm{R}(x)$ is the remainder function, we have

$$
\begin{equation*}
P(x)=Q(x) A(x)+R(x) \tag{1}
\end{equation*}
$$

Therefore, this can be expressed as

$$
\begin{equation*}
\frac{P(x)}{Q(x)}=\frac{Q(x)}{Q(x)} A(x) \cdots R(x) \tag{2}
\end{equation*}
$$

Note that $0 / 0=0$, and the expression is only reducible when $\mathrm{Q} / \mathrm{Q}=1$ holds. Therefore, we choose not to reduce Equation (2).

Then, according to Equation (1),

$$
\begin{equation*}
Q(a)=0 \Rightarrow R(a)=P(a) \tag{3}
\end{equation*}
$$

Therefore, if we let $x=a$ in Equation (2), the left-hand side becomes

$$
\begin{equation*}
\frac{P(x)}{Q(x)}=\frac{P(a)}{Q(a)}=\frac{P(a)}{0}=\frac{R(a)}{0} \tag{4}
\end{equation*}
$$

and the right-hand side becomes

$$
\begin{equation*}
\frac{Q(x)}{Q(x)} A(x)=\frac{Q(a)}{Q(a)} A(a)=\frac{0}{0} A(a)=0 \cdot A(a)=0 \cdots R(a) \tag{5}
\end{equation*}
$$

Therefore, according to Equation (4) and Equation (5), we obtain

$$
\begin{equation*}
\frac{R(a)}{0}=0 \cdots R(a) \tag{6}
\end{equation*}
$$

Note that it is necessary to be aware that $A(a)=0$ does not hold in general.
Consider function remainder formula division by zero in the following specific example. If we let the dividend function $\mathrm{P}(x)$ be

$$
\begin{equation*}
P(x)=2 x^{2}-3 x+1 \tag{7}
\end{equation*}
$$

and the divisor function $\mathrm{Q}(x)$ be

$$
\begin{equation*}
Q(x)=x+1 \tag{8}
\end{equation*}
$$

then the quotient function $\mathrm{A}(x)$ becomes

$$
\begin{equation*}
A(x)=2 x-5 \tag{9}
\end{equation*}
$$

and the remainder function $\mathrm{R}(x)$ becomes

$$
\begin{equation*}
R(x)=6 \tag{10}
\end{equation*}
$$

Therefore, substituting Equation (7), (8), (9), and (10) into Equation (2), we obtain

$$
\begin{equation*}
\frac{2 x^{2}-3 x+1}{x+1}=\frac{x+1}{x+1}(2 x-5) \cdots 6 \tag{11}
\end{equation*}
$$

If we let $f(x)$ be equal to the left-hand side of Equation (11) and $g(x)$ be equal to the right-hand side, then when $x=b \neq-1$,

$$
\begin{equation*}
Q(b) \neq 0 \tag{12}
\end{equation*}
$$

Therefore, Equation (11) becomes

$$
\begin{equation*}
\frac{2 b^{2}-3 b+1}{b+1}=(2 b-5) \cdots 6 \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
2 b^{2}-3 b+1=(b+1)(2 b-5)+6 \tag{14}
\end{equation*}
$$

holds, and satisfies the relationship in Equation (1).
When $x=-1$,

$$
\begin{equation*}
Q(-1)=0 \tag{15}
\end{equation*}
$$

Therefore, $f(x)$ in Equation (11) becomes

$$
\begin{equation*}
f(-1)=\frac{2(-1)^{2}-3(-1)+1}{(-1)+1}=\frac{6}{0} \tag{16}
\end{equation*}
$$

and $g(x)$ becomes

$$
\begin{equation*}
g(-1)=\frac{(-1)+1}{(-1)+1}\{2 \cdot(-1)-5\}=\frac{0}{0} \cdot(-7)=0 \cdot(-7)=0 \cdots 6 \tag{17}
\end{equation*}
$$

Therefore, based on Equation (16) and (17), we obtain

$$
\begin{equation*}
\frac{6}{0}=0 \cdots 6 \tag{18}
\end{equation*}
$$

In other words, this implies that

$$
\begin{equation*}
6=0 \cdot 0+6 \tag{19}
\end{equation*}
$$

In this example,

$$
\begin{equation*}
A(-1)=-7 \tag{20}
\end{equation*}
$$

Therefore, $A(a)=0$ does not necessarily hold.

