Remainder formula division by zero

Dividend a, divisor b, quotient c, and general remainder d can be represented as nonnegative real numbers by

$$
\begin{equation*}
\frac{a}{b}=c \cdots d \tag{1}
\end{equation*}
$$

The general remainder d satisfies $0 \leqq d \leqq a$, and takes on a value that is equal to the minimum non-negative value when c is maximized. In particular, if $b \neq 0$, then $0 \leqq d<$ b is satisfied. Equation (1) can also be represented as

$$
\begin{equation*}
a=b \times c+d \tag{2}
\end{equation*}
$$

Here, subtracting d from both sides of Equation (2) and dividing both sides by b, we can transform this equation to obtain

$$
\begin{equation*}
\frac{a-d}{b}=\frac{b}{b} \cdot c \tag{3}
\end{equation*}
$$

Here, it is thought that $0 / 0 \neq 1$, and because only $b / b=1$ is reducible, we choose not to reduce this expression.

Here, if we let $b=0$, then according to Equation (2), $a=d$. Therefore, the left-hand side of Equation (3) becomes

$$
\begin{equation*}
\frac{a-d}{b}=\frac{a-a}{0}=\frac{0}{0} \tag{4}
\end{equation*}
$$

and the right-hand side becomes

$$
\begin{equation*}
\frac{b}{b} \cdot c=\frac{0}{0} \cdot c \tag{5}
\end{equation*}
$$

Therefore, based on Equation (4) and (5), we obtain

$$
\begin{equation*}
\frac{0}{0}=\frac{0}{0} \cdot c \tag{6}
\end{equation*}
$$

Therefore, we transform this equation into

$$
\begin{equation*}
(c-1) \frac{0}{0}=0 \tag{7}
\end{equation*}
$$

If we assume that $c \neq 1$, we can divide both sides by $c-1$ and transform this equation into

$$
\begin{equation*}
\frac{0}{0}=\frac{0}{c-1} \tag{8}
\end{equation*}
$$

and obtain

$$
\begin{equation*}
\frac{0}{0}=0 \tag{9}
\end{equation*}
$$

If we let $a=d=0$ in Equation (1), then a comparison with Equation (9) shows that $c=$ 0 , and that this does not contradict the assumption that $c \neq 1$. Conversely, if we let $a=d$ $\neq 0$, then because d takes on the maximum value out of all possible values for d, this implies that the possible value for c consists of the minimum non-negative value. Based on this, we obtain $c=0$. Of course, this does not contradict the assumption that $c \neq 1$ either.

