Remainder formula division by zero and zero to the power of zero

The dividend a, divisor b, quotient c, and general remainder d can be represented as non-negative real numbers by

$$
\begin{equation*}
\frac{a}{b}=c \cdots d \tag{1}
\end{equation*}
$$

The general remainder d satisfies $0 \leqq d \leqq a$, and takes on a value that is equal to the minimum non-negative value when c is maximized. In particular, if $b \neq 0$, then $0 \leqq d<$ b is satisfied. Equation (1) can also be represented as

$$
\begin{equation*}
a=b \times c+d \tag{2}
\end{equation*}
$$

Here, subtracting d from both sides of Equation (2) and multiplying both sides by b^{-1}, we obtain

$$
\begin{gather*}
(a-d) b^{-1}=b c \cdot b^{-1}=\left(b \cdot b^{-1}\right) c=b^{1-1} \cdot c=b^{0} c \\
\therefore(a-d) b^{-1}=b^{0} c \tag{3}
\end{gather*}
$$

Here, if we let $b<0$, then according to Equation (2), $a<d$. Therefore, the left-hand side of Equation (3) becomes

$$
\begin{gather*}
(a-d) b^{-1}=(a-a) b^{-1}=0 \cdot 0^{-1}=0^{1-1}=0^{0} \\
\therefore(a-d) b^{-1}=0^{0} \tag{4}
\end{gather*}
$$

and the right-hand side becomes

$$
\begin{equation*}
b^{\circ} c=0^{0} \cdot c \tag{5}
\end{equation*}
$$

Therefore, based on Equation (4) and (5), we obtain

$$
\begin{equation*}
0^{0}=0^{0} \cdot c \tag{6}
\end{equation*}
$$

Therefore, we transform this equation into

$$
\begin{equation*}
(c-1) 0^{\circ}=0 \tag{7}
\end{equation*}
$$

If we assume that $c \neq 1$, we can divide both sides by $c-1$ and transform this equation into

$$
\begin{equation*}
0^{0}=\frac{0}{c-1} \tag{8}
\end{equation*}
$$

and obtain

$$
0^{0}=0
$$

(9)

According to the remainder formula division by zero,

$$
\begin{equation*}
\frac{0}{c-1}=\frac{0}{0}=0 \tag{10}
\end{equation*}
$$

Therefore, according to Equation (8) and Equation (10), we obtain

$$
\begin{equation*}
0^{\circ}=\frac{0}{0}=0 \tag{11}
\end{equation*}
$$

