## Functional remainder formula division by zero and zero to the power of zero

Theorem: For a dividend function $P(x)$, divisor function $\mathrm{Q}(x)$, quotient function $A(x)$, and remainder function $R(x)$ that satisfy the following relationship,

$$
P(x)=Q(x) A(x)+R(x)
$$

the following holds:

$$
\frac{P(x)}{Q(x)}=Q^{0}(x) A(x) \cdots R(x)
$$

In particular, for a value $a$ that satisfies $\mathrm{Q}(a)=0$, the following holds:

$$
\frac{R(a)}{0}=0 \cdots R(a)
$$

Note that $\mathrm{Q}^{0}(x)$ refers to $\mathrm{Q}^{0}$, and

$$
Q^{\circ}(x)= \begin{cases}0 & (Q=0) \\ 1 & (Q \neq 0)\end{cases}
$$

Proof: Based on the assumptions, for a dividend function $P(x)$, divisor function $\mathrm{Q}(x)$, quotient function $A(x)$, and remainder function $R(x)$,

$$
\begin{equation*}
P(x)=Q(x) A(x)+R(x) \tag{1}
\end{equation*}
$$

Therefore, dividing both sides by $\mathrm{Q}(x)$, this can be expressed as

$$
\begin{equation*}
\frac{P(x)}{Q(x)}=\frac{Q(x)}{Q(x)} A(x) \cdots R(x) \tag{2}
\end{equation*}
$$

Note that $0 / 0=0$, and reduction is possible only when $\mathrm{Q} / \mathrm{Q}=1$ holds. Therefore, we choose not to reduce Equation (2).

The $\mathrm{Q} / \mathrm{Q}$ part in the right-hand side of Equation (2) is

$$
\begin{equation*}
\frac{Q(x)}{Q(x)}=Q^{+1}(x) \cdot Q^{-1}(x)=Q^{1-1}(x)=Q^{\circ}(x) \tag{3}
\end{equation*}
$$

For a value of $a$ that satisfies $\mathrm{Q}(a)=0$, we obtain

$$
\begin{equation*}
Q^{0}(a)=\frac{Q(a)}{Q(a)}=\frac{0}{0}=0 \tag{4}
\end{equation*}
$$

Conversely, for a value of $b$ that satisfies $\mathrm{Q}(b) \neq 0$, we obtain

$$
\begin{equation*}
Q^{0}(b)=\frac{Q(b)}{Q(b)}=1 \tag{5}
\end{equation*}
$$

Therefore, based on Equation (4) and Equation (5),

$$
Q^{\circ}(x)= \begin{cases}0 & (Q=0) \\ 1 & (Q \neq 0)\end{cases}
$$

holds. Applying Equation (3) and Equation (6) to Equation (2), we obtain

$$
\frac{P(x)}{Q(x)}=Q^{0}(x) A(x) \cdots R(x) \quad Q^{0}(x)= \begin{cases}0 & (Q=0)  \tag{7}\\ 1 & (Q \neq 0)\end{cases}
$$

Based on Equation (1),

$$
\begin{equation*}
Q(a)=0 \Rightarrow R(a)=P(a) \tag{8}
\end{equation*}
$$

Therefore, if we let $x=a$ in Equation (7), then the left-hand side is

$$
\begin{equation*}
\frac{P(x)}{Q(x)}=\frac{P(a)}{Q(a)}=\frac{P(a)}{0}=\frac{R(a)}{0} \tag{9}
\end{equation*}
$$

and the right-hand side is

$$
\begin{equation*}
Q^{0}(x) A(x)=Q^{\circ}(a) A(a)=0 \cdot A(a)=0 \cdots R(a) \tag{10}
\end{equation*}
$$

Therefore, based on Equation (9) and (10), we obtain

$$
\begin{equation*}
\frac{R(a)}{0}=0 \cdots R(a) \tag{11}
\end{equation*}
$$

It is necessary to be aware that $A(a)=0$ does not hold in general.
Consider a specific example of functional remainder formula division by zero.
If we let the dividend function $P(x)$ be

$$
\begin{equation*}
P(x)=2 x^{2}-3 x+1 \tag{12}
\end{equation*}
$$

and the divisor function $\mathrm{Q}(x)$ be

$$
\begin{equation*}
Q(x)=x+1 \tag{13}
\end{equation*}
$$

then the quotient function $A(x)$ is

$$
\begin{equation*}
A(x)=2 x-5 \tag{14}
\end{equation*}
$$

and the remainder function $R(x)$ is

$$
\begin{equation*}
R(x)=6 \tag{15}
\end{equation*}
$$

Therefore, substituting Equation (12), (13), (14), and (15) into Equation (7), this becomes

$$
\begin{equation*}
\frac{2 x^{2}-3 x+1}{x+1}=(x+1)^{0}(2 x-5) \cdots 6 \tag{16}
\end{equation*}
$$

If we define $f(x)$ as the left-hand side of Equation (16), and $\mathrm{g}(\mathrm{x})$ as the right-hand side, then when $x=b \neq-1$,

$$
\begin{equation*}
Q(b) \neq 0 \tag{17}
\end{equation*}
$$

Therefore, Equation (16) is

$$
\begin{equation*}
\frac{2 b^{2}-3 b+1}{b+1}=(2 b-5) \cdots 6 \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
2 b^{2}-3 b+1=(b+1)(2 b-5)+6 \tag{19}
\end{equation*}
$$

holds and satisfies the relationship in Equation (1).
When $x=-1$,

$$
\begin{equation*}
Q(-1)=0 \tag{20}
\end{equation*}
$$

Therefore, $f(x)$ in Equation (16) is

$$
\begin{equation*}
f(-1)=\frac{2(-1)^{2}-3(-1)+1}{(-1)+1}=\frac{6}{0} \tag{21}
\end{equation*}
$$

and $g(x)$ is

$$
\begin{equation*}
g(-1)=\{(-1)+1\}^{0}\{2 \cdot(-1)-5\}=0^{0} \cdot(-7)=0 \cdot(-7)=0 \cdots 6 \tag{22}
\end{equation*}
$$

The transformation in Equation (22) uses the fundamental theorem of zero to the power of zero, $0^{0}=0$. Therefore, based on Equation (21) and Equation (22), we obtain

$$
\begin{equation*}
\frac{6}{0}=0 \cdots 6 \tag{23}
\end{equation*}
$$

In other words, this implies

$$
\begin{equation*}
6=0 \cdot 0+6 \tag{24}
\end{equation*}
$$

Note that in this example,

$$
\begin{equation*}
A(-1)=-7 \tag{25}
\end{equation*}
$$

It should be noted that $A(a)=0$ does not necessarily hold.

