Division by Zero

Proof of $0 / 0=0$ (reducible set theory)

Definition: When A and B are real numbers, calculation of division B / A is defined as follows:
In $|B|-(|\{A\}| \cdot|A|+a)=0(0 \leq a)(A, B, a \in \mathrm{R})$, if $B_{0}=B$ and $A_{j}=A(j=0,1,2, \ldots)$, a set based on A_{j+1} in the reducible recurrence relation, $B_{j}-A_{j+1}=B_{j+1}$ (this A_{j+1} will be referred to as the $j+1^{\text {th }}$ reducible number) is defined as the $j+1^{\text {th }}$ reducible number set $\left\{A_{j+1}\right\}$, and when B_{j} (this B_{j} will be referred to as the $j^{\text {th }}$ reduced number) satisfies $B_{j}>B_{j+1} \geq 0,\left\{A_{j+1}\right\} \neq \emptyset$, and when it does not satisfy this condition, $\left\{A_{j+1}\right\}=\emptyset$. The set whose elements belong to the reducible number set $\left\{A_{j+1}\right\}$ is defined as a reducible set $\{A\}$.

Here, B is the dividend and A is the divisor. $|\{A\}|$ is the number of elements in the reducible set $\{A\}$, and is the quotient of B / A. a is the remainder, and is the smallest non-negative real number when $|\{A\}|$ is maximized. At this time, the following holds:

Theorem 1: $0 / 0=0$.
Proof: Based on the definition $|B|-(|\{A\}| \cdot|A|+a)=0, B=0 \Rightarrow a=0$. Therefore,

$$
0-(|\{A\}| \cdot|A|+0)=0-|\{A\}| \cdot|A|=0
$$

where $A=0 \Rightarrow 0-|\{A\}| \cdot|A|=0-|\{A\}| \times 0=0$.
Now, because $B=B_{0}=0 \wedge A=A_{j}=0$, the reducible recurrence relation $B_{j}-A_{j+1}=B_{j+1}$ is $0-0$ $=0$, and $B_{j}>B_{j+1} \geq 0$ is not satisfied. Therefore, the reducible set $\{A\}=$ $\left\{\left\{A_{1}\right\},\left\{A_{2}\right\}, \ldots,\left\{A_{j}\right\}, \ldots\right\}=\{\emptyset, \emptyset, \ldots, \emptyset, \ldots\}=\emptyset$, and the number of elements $|\{A\}|=|\emptyset|=0$ are obtained. Therefore,

$$
A=B=0 \Rightarrow B-(|\{A\}| \cdot|A|+a)=0-(0 \times 0+0)=0
$$

$\therefore 0 / 0=0$.

Proof of $100 / 0=0$ (reducible set theory)

Theorem 2: In division B / A, the quotient is 0 when $A=0$ with the remainder of B.
Proof: When $B>0$, based on the definition $|B|-(|\{A\}| \cdot|A|+a)=0$, if $A=0, B=B_{0}>0 \wedge A=$ $A_{j}=0$. Therefore, the reducible recurrence relation $B_{j}-A_{j+1}=B_{j+1}$ is
$B_{0}-0=B_{0}=B_{1}$
$B_{1}-0=B_{1}=B_{2}$
$B_{j}-0=B_{j}=B_{j+1}$
and $B_{j}>B_{j+1} \geq 0$ is not satisfied.

Therefore, the reducible set $\{A\}=\left\{\left\{A_{1}\right\},\left\{A_{2}\right\}, \ldots,\left\{A_{j}\right\}, \ldots\right\}=\{\emptyset, \varnothing, \ldots, \varnothing, \ldots\}=\emptyset$, and the number of elements $|\{A\}|=|\varnothing|=0$ is obtained. Therefore,

$$
|A|=|\{A\}| \cdot|A|+a=|\emptyset| \cdot|0|+a=0 \times 0+a=a
$$

holds.
As such, $B>0 \Rightarrow a \neq 0$ is established. Here, $A=0 \Rightarrow$ quotient $|\{A\}|=0$, and the remainder $a=$ B. Because a is clearly the smallest non-negative number when $|\{A\}|$ is maximized, the quotient division B / A when $A=0$ and $B \neq 0$ is $|\{A\}|$, with the remainder a being B. Of course, $B=0 \Rightarrow a=0$ holds.

Here, the above definition purposely excludes the case in which at least A or B becomes negative; meaning only a quarter plane (the first quadrant) was considered. An extended definition that includes such negative numbers and its effects is shown below:

Extended definition: When A and/or B are real negative number(s), calculation of division B / A is defined as follows:

Quotient $=\frac{|A|}{A} \frac{|B|}{B}|\{A\}|$
Remainder term $=\frac{|B|}{B} a$
If substituted with the above, the result is as follows:
Signs for the quotient in each case are:
i. $\quad A=-\alpha<0 \wedge B=\beta>0$,

$$
\text { Quotient }=\frac{|A|}{A}\left|\frac{|B|}{B}\right|\{A\}\left|=\frac{|-\alpha||\beta|}{-\alpha} \frac{\beta}{\beta}\right|\{A\}\left|=-\frac{\alpha}{\alpha} \frac{\beta}{\beta}\right|\{A\}|=-|\{A\}|
$$

ii. $\mathrm{A}=\alpha>0 \wedge B=-\beta<0$,

Quotient $=\frac{|A|}{A} \frac{|B|}{B}|\{A\}|=\frac{|\alpha|}{\alpha} \frac{|-\beta|}{-\beta}|\{A\}|=-\frac{\alpha}{\alpha} \frac{\beta}{\beta}|\{A\}|=-|\{A\}|$
iii. $A=-\alpha<0 \wedge B=-\beta<0$,

$$
\text { Quotient }=\frac{|A|}{A} \frac{|B|}{B}|\{A\}|=\frac{|-\alpha|}{-\alpha} \frac{|-\beta|}{-\beta}|\{A\}|=-\frac{\alpha}{\alpha} \frac{\beta}{\beta}|\{A\}|=-|\{A\}|
$$

iv. $\mathrm{A}=0$,

Quotient $=\frac{|A|}{A} \frac{|B|}{B}|\{A\}|=\frac{|0|}{0} \frac{|\beta|}{\beta}|\{A\}|=0 \times 1 \times|\{A\}|=0 \times|\{A\}|$
v. $B=0$,

$$
\text { Quotient }=\frac{|A|}{A} \frac{|B|}{B}|\{A\}|=\frac{|\alpha|}{\alpha} \frac{|0|}{0}|\{A\}|=1 \times 0 \times|\{A\}|=0 \times|\{A\}|
$$

vi. $\quad A=0 \wedge B=0$,

$$
\text { Quotient }=\frac{|A|}{A} \frac{|B|}{B}|\{A\}|=\frac{|0|}{0} \frac{|0|}{0}|\{A\}|=0 \times 0 \times|\{A\}|=0 \times|\{A\}|
$$

Signs for the remainder term in each case are:
I. $A=\alpha>0 \wedge B=\beta>0$

$$
\text { Remainder term }=\frac{|B|}{B} \alpha=\frac{|\beta|}{\beta} \alpha=\frac{\beta}{\beta} \alpha=\alpha
$$

II. $A=-\alpha<0 \wedge B=\beta>0$

$$
\text { Remainder term }=\frac{|B|}{B} \alpha=\frac{|\beta|}{\beta} \alpha=\frac{\beta}{\beta} \alpha=\alpha
$$

III. $A=\alpha>0 \wedge B=-\beta<0$

$$
\text { Remainder term }=\frac{|B|}{B} \alpha=\frac{|-\beta|}{-\beta} \alpha=-\frac{\beta}{\beta} \alpha=-\alpha
$$

IV. $A=-\alpha<0 \wedge B=-\beta<0$

$$
\text { Remainder term }=\frac{|B|}{B} \alpha=\frac{|-\beta|}{-\beta} \alpha=-\frac{\beta}{\beta} \alpha=-\alpha
$$

V. $A=0 \wedge B= \pm \beta \neq 0$

$$
\text { Remainder term }=\frac{|B|}{B} \alpha=\frac{| \pm \beta|}{ \pm \beta} \alpha= \pm 1 \times \alpha= \pm \alpha
$$

VI. $A \neq 0 \wedge B=0$

$$
\text { Remainder term }=\frac{|B|}{B} \alpha=\frac{|0|}{0} \alpha=0 \times \alpha=0
$$

VII. $A=0 \wedge B=0$

$$
\text { Remainder term }=\frac{|B|}{B} \alpha=\frac{|0|}{0} \alpha=0 \times \alpha=0
$$

Lemma 1: In division B / A, if $A>B=0$, based on the definition, $B=B_{0}=0 \wedge A=A_{j}>0$, and the reducible recurrence relation $B_{j}-A_{j+1}=B_{j+1}$ is
$B_{0}-A_{1}=0-A=B_{1}$
$B_{1}-A_{2}=-A-A=-2 A=B_{2}$
$B_{j}-A_{j+1}=-(j+1) A=B_{j+1}$
and $B_{j}>B_{j+1} \geq 0$ is not satisfied.
Therefore, the reducible set $\{A\}=\left\{\left\{A_{1}\right\},\left\{A_{2}\right\}, \ldots,\left\{A_{j\}}, \ldots\right\}=\{\varnothing, \varnothing, \ldots, \varnothing, \ldots\}=\varnothing\right.$, and the number of elements $|\{A\}|=|\emptyset|=0$ are obtained. Therefore, when $A>B=0$,

$$
0-(|\{A\}| \cdot|A|+a)=0-(|\varnothing| \cdot|A|+a)=0-(0 \times|A|+a)=0-(0+a)=0
$$

$\therefore a=0$.
As such, $A>B=0 \Rightarrow$ quotient $|\{A\}|=0$ and remainder $a=0$ are established.
Lemma 2: In division B / A, if $A>B>0$, based on the definition, $0<B=B_{0}<A=A_{j}$, and the reducible recurrence relation $B_{j}-A_{j+1}=B_{j+1}$ is
$B_{0}-A_{1}=0-A=B_{1}$
$B_{1}-A_{2}=-A-A=-2 A=B_{2}$
$B_{j}-A_{j+1}=-j A-A=-(j+1) A=B_{j+1}$
and $B_{j}>B_{j+1} \geq 0$ is not satisfied.
Therefore, the reducible set $\{A\}=\left\{\left\{A_{1}\right\},\left\{A_{2}\right\}, \ldots,\left\{A_{j}\right\}, \ldots\right\}=\{\varnothing, \varnothing, \ldots, \emptyset, \ldots\}=\varnothing$, and the number of elements $|\{A\}|=|\varnothing|=0$ are obtained.

Therefore, when $A>B>0$,

$$
B-(|\{A\}| \cdot|A|+a)=B-(|\varnothing| \cdot|A|+a)=B-(0 \times|A|+a)=B-(0+a)=B-a=0
$$

$\therefore B=a$ is obtained.

As such, $A>B>0 \Rightarrow$ quotient $|\{A\}|=0$ and remainder $a=B$ are established.
Lemma 3: In division B / A, if $B>A=0, A=0 \Rightarrow$ quotient $|\{A\}|=0$ and remainder $a=B$ are established.
It is proven by Theorem 2.
Lemma 4: In division B / A, if $B>A>0$, based on the definition, dividend B can be expressed as $B=k A+b$ (however, $k \in \mathrm{~N}, 0 \leq b<A$).

Using this expression, we obtain $B_{0}=B=k A+b$; thus, the reducible recurrence relation $B_{j}-$ $A_{j+1}=B_{j+1}$ is:

```
\(B_{0}-A_{1}=(k A+b)-A=\{(k-1) A+b\}=B_{1}\)
\(B_{1}-A_{2}=\{(k-1) A+b\}-A=\{(k-2) A+b\}=B_{2}\)
```

$B_{k-1}-A_{k}=(A+b)-A=b=B_{k}$
$B_{k}-A_{k+1}=b-A=B_{k+1}<0$
and $B_{0}>B_{1}>\cdots>B_{k-1}>B_{k} \geq 0$ is clearly established from the hypothesis. $B_{k}>B_{k+1} \geq 0$ is not satisfied.

Therefore, the reducible number set $\left\{A_{j+1}\right\}$ is
$\left\{A_{1}\right\} \neq \emptyset \wedge\left\{A_{2}\right\} \neq \emptyset \wedge \cdots \wedge\left\{A_{k}\right\} \neq \emptyset \wedge\left\{A_{k+1}\right\}=\emptyset \wedge\left\{A_{k+2}\right\}=\varnothing \wedge \cdots$
and the reducible set $\{A\}$ is

$$
\{A\}=\left\{\left\{A_{1}\right\} \neq \emptyset,\left\{A_{2}\right\} \neq \emptyset, \cdots,\left\{A_{k}\right\} \neq \emptyset,\left\{A_{k+1}\right\}=\emptyset,\left\{A_{k+2}\right\}=\emptyset, \cdots\right\}
$$

The number of elements $|\{A\}|$ of the reducible set $\{A\}$ clearly becomes $|\{A\}|=k$. In other words, the quotient of the division B / A is k, and this is consistent with the hypothesis.

If this result is applied to the definition:

$$
|B|-(|\{A\}| \cdot|A|+a)=B-(k A+a)=(k A+b)-(k A+a)=b-a=0
$$

$\therefore a=b(0 \leq b<A)$ is established.
Here, if $b=0, B$ is clearly a positive real number and is an integral multiple of A. This means that if the remainder a is 0 and $b>0$, and if B is divided by A, the remainder a becomes b.

Lemma 5: In division B / A, if $A=B=0,0 / 0=0$. It is proven by Theorem 1 .

