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Tangent and Division by Zero

Theorem Given a real number a,

tan-=—=0
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Proof On an xy-coordinate plane, concentric circles C: and C: of radii r: and 2, respectively, are
drawn with their center at the origin O (see Fig. 1). A point Pi(ai1,b:) is selected on the circumference
of Ci and, starting from the origin, a line segment OP is drawn that makes radial angle 6 with the x-
axis. Then, that segment is extended to C-, and the intersection point is called P2(az,b-). Moreover, it
is assumed that 1 = 72, as in Fig. 1. Therefore, Ar = r>—r1 2 0.
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Thus,
tanf = — (1)
2 2
tan @ = (1_2 (2)

Then, if 6 = w/2, it is clear that b1 = 1 A b2 = r2; thus, Equations (1) and (2) can be expressed as
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Therefore, it is clear from (3) and (4) that
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which yields
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Then, as long as Ar = 0, multiplying both sides of (6) by —1 leaves (6) invariant for any Ar. Thus, for
the real number a,
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Consequently,
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QED.



