Tangent and Division by Zero

Theorem Given a real number *a*,

$$\tan\frac{\pi}{2} = \frac{a}{0} = 0$$

Proof On an *xy*-coordinate plane, concentric circles C₁ and C₂ of radii r_1 and r_2 , respectively, are drawn with their center at the origin O (see Fig. 1). A point P₁(a_1 , b_1) is selected on the circumference of C₁ and, starting from the origin, a line segment OP is drawn that makes radial angle θ with the *x*-axis. Then, that segment is extended to C₂, and the intersection point is called P₂(a_2 , b_2). Moreover, it is assumed that $r_1 \leq r_2$, as in Fig. 1. Therefore, $\Delta r = r_2 - r_1 \geq 0$.

Thus,

$$\tan \theta = \frac{b_1}{a_1}$$
(1)
$$\tan \theta = \frac{b_2}{a_2}$$
(2)

Then, if $\theta = \pi/2$, it is clear that $b_1 = r_1 \wedge b_2 = r_2$; thus, Equations (1) and (2) can be expressed as

$$\tan \theta = \frac{b_1}{a_1} \Rightarrow \tan \frac{\pi}{2} = \frac{r_1}{0} \tag{3}$$

$$\tan \theta = \frac{b_2}{a_2} \Rightarrow \tan \frac{\pi}{2} = \frac{r_2}{0} \tag{4}$$

Therefore, it is clear from (3) and (4) that

$$\tan\frac{\pi}{2} = \frac{r_1}{0} = \frac{r_2}{0} \tag{5}$$

which yields

$$\frac{r_2}{0} - \frac{r_1}{0} = \frac{1 \cdot r_2}{0} - \frac{1 \cdot r_1}{0} = \frac{1}{0}r_2 - \frac{1}{0}r_1 = \frac{1}{0}(r_2 - r_1) = \frac{1}{0}\Delta r = \frac{\Delta r}{0} = 0$$
(6)

Then, as long as $\Delta r \ge 0$, multiplying both sides of (6) by -1 leaves (6) invariant for any Δr . Thus, for the real number *a*,

$$\frac{a}{0} = 0 \qquad (7)$$

Consequently,

$$\tan\frac{\pi}{2} = \frac{a}{0} = 0$$

QED.