Tangent and Division by Zero

Theorem Given a real number a,

$$
\tan \frac{\pi}{2}=\frac{a}{0}=0
$$

Proof On an $x y$-coordinate plane, concentric circles C_{1} and C_{2} of radii r_{1} and r_{2}, respectively, are drawn with their center at the origin O (see Fig. 1). A point $\mathrm{P}_{1}\left(a_{1}, b_{1}\right)$ is selected on the circumference of C_{1} and, starting from the origin, a line segment OP is drawn that makes radial angle θ with the x axis. Then, that segment is extended to C_{2}, and the intersection point is called $\mathrm{P}_{2}\left(a_{2}, b_{2}\right)$. Moreover, it is assumed that $r_{1} \leqq r_{2}$, as in Fig. 1. Therefore, $\Delta r=r_{2}-r_{1} \geqq 0$.

Fig. 1
Thus,

$$
\begin{align*}
& \tan \theta=\frac{b_{1}}{a_{1}} \tag{1}\\
& \tan \theta=\frac{b_{2}}{a_{2}} \tag{2}
\end{align*}
$$

Then, if $\theta=\pi / 2$, it is clear that $b_{1}=r_{1} \wedge b_{2}=r_{2}$; thus, Equations (1) and (2) can be expressed as

$$
\begin{align*}
& \tan \theta=\frac{b_{1}}{a_{1}} \Rightarrow \tan \frac{\pi}{2}=\frac{r_{1}}{0} \tag{3}\\
& \tan \theta=\frac{b_{2}}{a_{2}} \Rightarrow \tan \frac{\pi}{2}=\frac{r_{2}}{0} \tag{4}
\end{align*}
$$

Therefore, it is clear from (3) and (4) that

$$
\begin{equation*}
\tan \frac{\pi}{2}=\frac{r_{1}}{0}=\frac{r_{2}}{0} \tag{5}
\end{equation*}
$$

which yields

$$
\begin{equation*}
\frac{r_{2}}{0}-\frac{r_{1}}{0}=\frac{1 \cdot r_{2}}{0}-\frac{1 \cdot r_{1}}{0}=\frac{1}{0} r_{2}-\frac{1}{0} r_{1}=\frac{1}{0}\left(r_{2}-r_{1}\right)=\frac{1}{0} \Delta r=\frac{\Delta r}{0}=0 \tag{6}
\end{equation*}
$$

Then, as long as $\Delta r \geqq 0$, multiplying both sides of (6) by -1 leaves (6) invariant for any Δr. Thus, for the real number a,

$$
\begin{equation*}
\frac{a}{0}=0 \tag{7}
\end{equation*}
$$

Consequently,

$$
\tan \frac{\pi}{2}=\frac{a}{0}=0
$$

QED.

