Expanding Compound Fractions Using Division by Zero

Theorem Given two nonnegative integers n, m, when

$$
\begin{equation*}
n-0 \times m>n-1 \times m>n-2 \times m>\cdots>n-k \times m=r \quad\left(k \in \mathrm{~N}_{0}: \text { Nonnegative integers }\right) \tag{1}
\end{equation*}
$$

and r is the smallest nonnegative integer that satisfies (1),

$$
\begin{align*}
\frac{n}{m}=0 \frac{n-0 \times m}{m}= & 1 \frac{n-1 \times m}{m}=2 \frac{n-2 \times m}{m}=\cdots=k \frac{n-k \times m}{m}=k \frac{r}{m}=k+\frac{r}{m} \\
& \Rightarrow \frac{n}{m}=k \cdots r \quad n=k m+r \tag{2}
\end{align*}
$$

where ${ }^{\cdots r} r$ denotes the remainder obtained after dividing n by m.
Proof When $m \neq 0$,
i. $n>m$

If $n=k m+r\left(k \in \aleph_{0} \wedge 0 \leqq r<m\right)$, it is clear.
ii. $n=m$

In (1),
$n-0 \times m>n-1 \times m=0 \quad\left(k \in \mathrm{~N}_{0}:\right.$ Nonnegative integers)
implies that $k=1 \wedge r=0$. This yields

$$
\frac{n}{m}=1 \cdots 0 \quad \wedge \quad n=1 \times m+0=m
$$

iii. $n<m$

In (1),
$n-0 \times m=n \quad\left(k \in \mathrm{~N}_{0}\right.$: Nonnegative integers $)$
implies that $=0 \wedge r=n$. This yields

$$
\frac{n}{m}=0 \cdots n \quad \wedge \quad n=0 \times m+n=n
$$

iv. $n=0$

In (1),
$n-0 \times m=n \quad\left(k \in \mathrm{~N}_{0}\right.$: Nonnegative integers $)$
implies that $k=0 \wedge r=n=0$. That yields

$$
\frac{n}{m}=0 \cdots 0 \quad \wedge \quad n=0 \times m+0=0
$$

When $m=0$,
In (1),

$$
n-k \times 0=n \quad\left(k \in \mathrm{~N}_{0}: \text { Nonnegative integers }\right)
$$

implies that $k=0 \wedge r=n$. Therefore,

$$
\frac{n}{m}=\frac{n}{0}=0 \frac{n-0 \times 0}{0}=0 \frac{r}{0}=0+\frac{r}{0}=\frac{n}{0}
$$

Consequently,

$$
\Rightarrow \frac{n}{0}=0 \cdots n \quad \wedge \quad n=0 \times 0+r=0 \times 0+n=n
$$

QED.
It can be seen from the above that it is possible to expand a compound fraction in a natural form by letting the denominator (divisor) equal 0 .

Moreover, in the relation

$$
\begin{equation*}
k \frac{r}{m}=k+\frac{r}{m} \tag{3}
\end{equation*}
$$

if $m=0$ and $k \neq 0$, it should be noted that

$$
\begin{equation*}
k+\frac{r}{m}=k \frac{r}{m} \tag{4}
\end{equation*}
$$

cannot lead to

$$
\begin{equation*}
\frac{n}{m}=k \cdots r \quad \wedge \quad n=k m+r \tag{5}
\end{equation*}
$$

The reason for this is that (4)

$$
\begin{gathered}
k+\frac{r}{m}=k \frac{r}{m}=\frac{r+k m}{m}=\frac{r}{m}+\frac{k m}{m}=\frac{r}{m}+\frac{m}{m} k \\
\therefore \quad k=\frac{m}{m} k
\end{gathered}
$$

implies that

$$
\begin{equation*}
\frac{m}{m}=1 \tag{6}
\end{equation*}
$$

However, by Theorem,

$$
\begin{equation*}
\frac{0}{0}=0 \tag{7}
\end{equation*}
$$

which is inconsistent. That is, it should be noted that the zero-denominator fraction that is obtained when $m=0$ cannot be reduced to a nonzero denominator.

