Division by Zero and Limits

For a that satisfies $\boldsymbol{a} \in \mathrm{R} \wedge \boldsymbol{a} \neq 0$, take \boldsymbol{n} as \boldsymbol{a} real number of an arbitrary size, and consider dividing a with 0 .

$$
\frac{a}{0}=\frac{a}{0} \times 1=\frac{a}{0} \times \frac{1 / n}{1 / n}=\frac{a}{0} \times \frac{m}{m}
$$

In the above equation, consider the limit for \boldsymbol{n}. In other words,

$$
\lim _{n \rightarrow \infty} \frac{a}{0} \times \frac{1 / n}{1 / n}=\lim _{n \rightarrow \infty} \frac{a \times 1 / n}{0 \times 1 / n}=\lim _{n \rightarrow \infty} \frac{a / n}{0}=\frac{0}{0}=0
$$

and

$$
\lim _{m \rightarrow 0} \frac{a}{0} \times \frac{m}{m}=\lim _{m \rightarrow 0} \frac{a \times m}{0 \times m}=\lim _{m \rightarrow 0} \frac{a m}{0}=\frac{0}{0}=0
$$

is obtained. However, the last equation uses $0 / 0=0$. Here, if $1 / \boldsymbol{n}=\boldsymbol{m}$, note that

$$
\lim _{n \rightarrow \infty} \frac{1 / n}{1 / n}=\lim _{m \rightarrow 0} \frac{m}{m}=1
$$

and

$$
\lim _{n \rightarrow \infty} \frac{1 / n}{1 / n}=\lim _{m \rightarrow 0} \frac{m}{m} \neq \frac{0}{0}
$$

In other words, the limit system retains its form, and the ratio does not change even at the limit; however, in division by zero such as $0 / 0=0$ where it is discontinuous to the limit, discrimination is necessary. In addition, the above result indicates that with \boldsymbol{a} being any real number, dividing \boldsymbol{a} with 0 approaches $0 / 0=0$ infinitely. However, it should be noted that in a strict sense, there is a gap between the limit and a fixed point.

Reference: If $y=(x)=x$ is differentiated for \boldsymbol{x},

$$
y^{\prime}=f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{(x+\Delta x)-x}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{\Delta x}{\Delta x}=1
$$

Therefore, the limit in the above division by zero is valid.

