Division by Zero, as Illustrated by the Inscribed and Circumscribed Circles of a Triangle

Let r and R be the radii, respectively, of the inscribed and circumscribed circles of a triangle $\Delta \mathrm{ABC}$ with sides a, b, c opposite to vertexes $\mathrm{A}, \mathrm{B}, \mathrm{C}$, as in the figure below.

Then, the area S of $\triangle \mathrm{ABC}$ is

$$
\begin{equation*}
S=\frac{r}{2}(a+b+c)=\frac{a b c}{4 R} \tag{1}
\end{equation*}
$$

It is now assumed that $\triangle \mathrm{ABC}$ is shrunk beyond its limit, that is, the radius R of the circumscribed circle is $R=0$. Of course, this implies that the radius r of the inscribed circle would also be zero. Consequently, the middle part of (1) would be

$$
\begin{equation*}
\frac{r}{2}(a+b+c)=\frac{0}{2}(0+0+0)=0 \tag{2}
\end{equation*}
$$

and the right side would be

$$
\begin{equation*}
\frac{a b c}{4 R}=\frac{0 \times 0 \times 0}{4 \times 0}=\frac{0}{0} \tag{3}
\end{equation*}
$$

Consequently, the left, middle, and right sides of (1) all represent the area of $\triangle \mathrm{ABC}$, and it is selfevident that the area S of $\triangle \mathrm{ABC}$ is 0 when the radius R of the circumscribed circle is 0 . Thus, (2) and (3) yield

$$
\begin{equation*}
\frac{0}{0}=0 \tag{4}
\end{equation*}
$$

Note Let the inverse relational expression of (1) be considered, namely

$$
\begin{equation*}
\frac{1}{\mathrm{~s}}=\frac{2}{r(a+b+c)}=\frac{4 R}{a b c} \tag{5}
\end{equation*}
$$

When $R=0$, (5) is

$$
\begin{equation*}
\frac{1}{0}=\frac{2}{0 \times(0+0+0)}=\frac{0}{0}=0 \tag{6}
\end{equation*}
$$

by (4), yielding

$$
\begin{equation*}
\frac{1}{0}=0 \tag{7}
\end{equation*}
$$

It is now assumed that $\Delta \mathrm{ABC}$ is enlarged beyond its limit, that is, the radius R of the circumscribed circle is $R=\infty$. Then, the middle part of (5) becomes

$$
\begin{equation*}
\frac{2}{\dot{\infty}(\dot{\infty}+\dot{\infty}+\dot{\infty})}=\frac{2}{\dot{\infty}}=0 \tag{8}
\end{equation*}
$$

and the right side becomes

$$
\begin{equation*}
\frac{4 \times \dot{\infty}}{\dot{\infty} \times \dot{\infty} \times \dot{\infty}}=\frac{\dot{\infty}}{\dot{\infty}} \tag{9}
\end{equation*}
$$

Thus, (8) and (9) yield

$$
\begin{equation*}
\frac{\dot{\infty}}{\dot{\infty}}=0 \tag{10}
\end{equation*}
$$

Furthermore, by (5) and (10),

$$
\begin{equation*}
\frac{1}{\dot{\infty}}=\frac{\dot{\infty}}{\dot{\infty}}=0 \tag{11}
\end{equation*}
$$

and considering (7), we obtain

$$
\begin{equation*}
\dot{\infty}=0 \tag{12}
\end{equation*}
$$

The symbol ∞° here denotes true infinity, which is a point beyond infinity or the size between the origin and the point of true infinity. That is, a triangle with a circumscribed circle (inscribed circle) whose radius is true infinity can be considered to have an area equal to zero.

