Fixed-Point Theorem, Curvature, and Division by Zero

Theorem The following relational expression is true:

$$
\frac{0}{0}=\frac{1}{0}=0
$$

Furthermore, when the radius of curvature r is used to let the curvature μ be $\mu(r)=1 / r$,

$$
\mu(0)=0
$$

Proof Given a disk on a suitable closed interval of a polar coordinate system centered at the origin, where $0 \leqq \theta \leqq 2 \pi$, the angular velocity ω, using the factor of proportionality μ, is expressed as

$$
\begin{equation*}
\omega=f(v)=\mu v \tag{1}
\end{equation*}
$$

Let $\mu \neq 1$ and v be a quantity called peripheral speed.
According to L.E.J. Brouwer's fixed-point theorem, there is at least one value of v_{c} such that for (1),

$$
\begin{equation*}
f\left(v_{c}\right)=v_{c} \tag{2}
\end{equation*}
$$

From this assumption, the value of v_{c} that satisfies (2) should clearly be $v_{c}=0$, namely

$$
\begin{equation*}
\omega=f(0)=0 \tag{3}
\end{equation*}
$$

Incidentally, the angular velocity ω is expressed as a time differential of the phase θ, that is,

$$
\begin{equation*}
\omega=\frac{\mathrm{d} \theta}{\mathrm{~d} t} \tag{4}
\end{equation*}
$$

and the peripheral speed v is expressed using the arc length s as

$$
\begin{equation*}
v=\frac{\mathrm{d} s}{\mathrm{~d} t} \tag{5}
\end{equation*}
$$

Moreover, if (1) is transformed as follows:

$$
\begin{equation*}
\mu=\frac{\omega}{v} \tag{6}
\end{equation*}
$$

and (4) and (5) are substituted into expression (6),

$$
\begin{equation*}
\mu=\frac{\omega}{v}=\frac{\mathrm{d} \theta / \mathrm{d} t}{\mathrm{~d} s / \mathrm{d} t}=\frac{\mathrm{d} \theta}{\mathrm{~d} s} \tag{7}
\end{equation*}
$$

it can be seen that μ represents the curvature. Consequently, the curvature (r), where r is the radius of curvature, is expressed as

$$
\begin{equation*}
\mu=\frac{\omega}{v}=\frac{1}{r} \tag{8}
\end{equation*}
$$

Based on this, (1) can be rewritten as

$$
\begin{equation*}
\omega=f(v)=\frac{v}{r} \tag{9}
\end{equation*}
$$

Moreover, (9) can be expressed as

$$
\begin{equation*}
v=g(r)=r \omega \tag{10}
\end{equation*}
$$

Thus, when $r=0$ for all angular velocities ω, we have

$$
\begin{equation*}
v=g(0)=0 \tag{11}
\end{equation*}
$$

Consequently, the origin of this rotating disk system is a fixed point according to L.E.J. Brouwer's fixed-point theorem.

Therefore, based on (3) and (11), the origin of a rotating disk system (r, ω, v) is a fixed point with values $(0,0,0)$, which yields

$$
\begin{equation*}
\omega=f(0)=\frac{0}{0}=0 \tag{12}
\end{equation*}
$$

in (9). Applying (12) to (8) yields

$$
\begin{equation*}
\mu=\frac{0}{0}=\frac{1}{0}=0 \tag{13}
\end{equation*}
$$

In addition to showing that $0 / 0=1 / 0=0$, that is, the quotient of any number by 0 is $0,(13)$ also shows that when the radius of curvature $r=0$, the curvature (r) is $\mu(0)=0$.

QED

