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Reducible set theoretical division of complex numbers 

 
Theorem 1: In the division of two complex numbers, z1 and z2, z1/z2, there is a complex 
quotient z3 and a complex remainder z4 that satisfy 
 

 
 
where “…” means that the value immediately after “…” is the remainder term.  
 
Theorem 2: In the division of two complex numbers, z1 and z2, z1/z2, if we define the 
quotient of reducible set theoretical division of real numbers |{r2}| using the complex radius 
r2 of z2 as the smallest non-negative real number when |{r2}| is maximized,  
 

 
 

is established. However, 𝜃1 and 𝜃2 are real numbers, and are the complex azimuth of z1 and z2, 
respectively. “…” means that the value immediately after “…” is the remainder term.  
 
Theorem 3: When 𝑧 ∈ C, 
 

 
 

holds.  
 
Proof: Proofs for Theorems 1, 2, and 3 are shown below without separation.  
 
If we express the complex number 𝑧 = a + b𝑖 (a, b ∈ R, i: imaginary unit) using Euler’s 
formula as a polar form, 
 

𝑧 = 𝑟𝑒𝑖𝜃 = (cos𝜃 − 𝑖sin𝜃) (1) 
 
where r is the distance from the origin on the complex plane (complex radius), and θ is the 
slope angle from the positive side of the real axis. Both r and θ are real numbers. Using these 
values, two complex numbers z1 and z2 are expressed as  
 

𝑧1 = r1𝑒𝑖𝜃1  (2) 
𝑧2 = r2𝑒𝑖𝜃2  (3) 

 
If z1 is divided by z2, it is expressed as 
 

 



 
The result of Equation (4) is a complex number with a complex radius of r1/r2 that occurs as a 
result of division z1/z2, and the term inside of { } is the unit radial azimuth component.  
 

Definition of reducible set theoretical division of real numbers 
 
When A and B are real numbers, the calculation of division B/A is as follows. In  
 

|B| – (|{A}|・|A| + a) = 0 ( 0 ≤ a) (A, B, a ∈ R) (5) 
 
we assume B0 = B and Aj =A (j = 0, 1, 2, …), and define a set based on Aj+1 (this Aj+1 is called 
the j+1th reducible number) in the reducible recurrence relation Bj – Aj+1 = Bj+1 as the j+1th 
reducible number set {Aj+1}, and when Bj (this Bj is called the jth reduced number) satisfies Bj 
> Bj+1 ≥ 0, {Aj+1} ≠ ∅, and when this condition it not satisfied, {Aj+1} = ∅. The set whose 
elements are all within the reducible number set {Aj+1} is defined as the reducible set {A}. 
Here, B is the dividend, A is the divisor, and |{A}| is the number of elements of the reducible 
set {A}, which is the quotient of B/A, where a is the remainder, which is the smallest non-
negative real number when |{A}| is maximized.  
 
Therefore, if r1/r2 is treated based on reducible set theory, when the remainder is s, it is 
expressed as  
 

|r1| − (|{r2}| ∙ | r2| + s) = 0 (0 ≤ s) (r1, r2, s∈R) (6) 
 
Therefore Equation (4) becomes  
 

 
 
Here, the quotient and remainder terms of Equation (7) are 
 

 
 

respectively, and can be expressed as 
 

 
 

Here, we can see that the quotient of Equation (10) is the complex quotient z3, which is a 
complex number, and the remainder is the complex remainder z4, which is a complex number. 
In other words, division of a complex number by a complex number can be defined by the 
reducible set theory as shown above. It questions the ratio of the complex radius of z1 (r1) to 
the complex radius of z2 (r2); i.e., the complex radius ratio. At the same time, it refers to the 
number of times the complex radius r2 can be reduced from the complex radius r1 of 𝑧1, and it 
asks the size of the difference in the complex azimuth. The true nature of asking these two 
questions is that the amount of information in the original complex number z consists of two 
points; in other words, two sets of information on the real axis and the imaginary axis.  



 
In Equation (7), let us suppose a case where 𝜃1 = 𝜃2 = 0. In this case, Equation (7) can be 
reduced as follows:  
 

 

 
 

Therefore, we can see that the reducible set theoretical complex division expressed in 
Equation (7) is a natural expansion of the reducible set theoretical division of real numbers.  
 
Also, in Equation (7), if r2 = 0, it is clear that z2 = 0 based on Equation (3), and can be 
expressed as 𝜃2 = |∅|; therefore,   
 

 
 

is obtained.  


